If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-61x-128=0
a = 1; b = -61; c = -128;
Δ = b2-4ac
Δ = -612-4·1·(-128)
Δ = 4233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-61)-\sqrt{4233}}{2*1}=\frac{61-\sqrt{4233}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-61)+\sqrt{4233}}{2*1}=\frac{61+\sqrt{4233}}{2} $
| 20=4x+-12 | | 16a+9=a-486 | | X2+6x+9=49 | | -3/x+1=8/x+3 | | p+277=-9p-3 | | 1/3p=p/3 | | 88.1=b/4 | | (3x)x-3=81 | | 7/3p=p/3 | | 57.1=b/7 | | b+138=-6b-9 | | a/3+2=11 | | -4c-9=c-84 | | 2x+3x=9+6 | | 51.7=b/7 | | 9+3.5g=11−0.5g9+3.5g=11−0.5g | | -8-7=n-187 | | p–7=3 | | 3x=2(-4) | | C(q)=0,1q2+70q+200 | | -9b+7=b+137 | | 7x-6=x+8 | | 6x-6-4x+6=360 | | 5y-9-31-y=360 | | 23=k/13 | | 5y-9+31-y=360 | | 25+3-x=9 | | 5y-9=31-9 | | n/499=1 | | (3x+7)(x+8)=0 | | (5x-30)=90 | | 7-x4+3=4 |